Acyclic T -improper Colourings of Graphs with Bounded Maximum Degree
نویسندگان
چکیده
For graphs of bounded maximum degree, we consider acyclic t-improper colourings, that is, colourings in which each bipartite subgraph consisting of the edges between two colour classes is acyclic and each colour class induces a graph with maximum degree at most t. In the first part, we show that all subcubic graphs are acyclically 1-improperly 3-choosable, thus extending a result of Boiron, Sopena and Vignal (1997, DMTCS 49, 1–10). In the second part, we consider the supremum, over all graphs of maximum degree at most d, of the acyclic t-improper chromatic number and provide t-improper analogues of results by Alon, McDiarmid and Reed (1991, RSA 2(3), 277–288) and Fertin, Raspaud and Reed (2004, JGT 47(3), 163–182). Submission date: 27 February 2007.
منابع مشابه
Acyclic improper colourings of graphs with bounded maximum degree
For graphs of bounded maximum degree, we consider acyclic t-improper colourings, that is, colourings in which each bipartite subgraph consisting of the edges between two colour classes is acyclic and each colour class induces a graph with maximum degree at most t. We consider the supremum, over all graphs of maximum degree at most d, of the acyclic t-improper chromatic number and provide t-impr...
متن کاملAcyclic and Frugal Colourings of Graphs
Given a graph G = (V,E), a proper vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper t-frugal colourings and Yuster [19] studied acyclic proper 2-frugal colouri...
متن کاملAcyclic improper colourings of graphs with bounded degree
In this paper, we continue the study of acyclic improper colourings of graphs introduced in a previous work. An improper colouring of a graph G is a mapping c from the set of vertices of G to a set of colours such that for every colour i, the subgraph induced by the vertices with colour i satisses some property depending on i. Such an improper colouring is acyclic if for every two distinct colo...
متن کاملFrugal, acyclic and star colourings of graphs
Given a graph G = (V,E), a vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper t-frugal colourings and Yuster [22] studied acyclic proper 2-frugal colourings. In...
متن کاملAcyclic improper choosability of graphs
We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007